Calculus AI-SL Pt.1

- · Intro to derivatives
- · First order

derivative

Mario Willyam

Intro to Derivatives

Slope =
$$\frac{\text{Change in Y}}{\text{Change in X}}$$

We can find an average slope between two points.

average slope = $\frac{24}{15}$

But how do we find the slope at a point?

There is nothing to measure!

slope =
$$\frac{0}{0}$$
 = ???

But with derivatives we use a small difference ...

... then have it shrink towards zero.

(The key point of derivative is that we want to find a (tangent) gradient at a point from f(u)

Let us Find a Derivative!

To find the derivative of a function y = f(x) we use the slope formula:

$$Slope = \frac{Change \ in \ Y}{Change \ in \ X} = \frac{\Delta y}{\Delta x}$$
 And (from the diagram) we see that:
$$x \ changes \ from \quad x \ to \ x + \Delta x \\ y \ changes \ from \quad f(x) \ to \ f(x + \Delta x)$$

Now follow these steps:

- Fill in this slope formula: $\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x) f(x)}{\Delta x}$
- · Simplify it as best we can
- Then make Ax shrink towards zero.

x changes from

Notation

"Shrink towards zero" is actually written as a limit like this:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

"The derivative of ${\bf f}$ equals

the limit as Δx goes to zero of $f(x+\Delta x)$ - f(x) over Δx "

We know $f(x) = x^2$, and we can calculate $f(x+\Delta x)$:

Start with: $f(x+\Delta x) = (x+\Delta x)^2$

Expand $(x + \Delta x)^2$: $f(x+\Delta x) = x^2 + 2x \Delta x + (\Delta x)^2$

The slope formula is: $\frac{f(x+\Delta x) - f(x)}{\Delta x}$

Put in $f(x+\Delta x)$ and f(x): $\frac{x^2 + 2x \Delta x + (\Delta x)^2 - x^2}{\Delta x}$

Simplify (x² and -x² cancel): $\frac{2x \Delta x + (\Delta x)^2}{\Delta x}$

Simplify more (divide through by Δx): = $2x + \Delta x$

Then, as Δx heads towards 0 we get: = 2x

Result: the derivative of x^2 is 2x

In other words, the slope at x is 2x

We write dx instead of "Ax heads towards 0".

And "the derivative of" is commonly written $\frac{d}{dx}$ like this:

$$\frac{d}{dx}x^2 = 2x$$

"The derivative of x^2 equals 2x" or simply "d dx of x^2 equals 2x"

So what does $\frac{d}{dx}x^2 = 2x$ mean?

It means that, for the function x^2 , the slope or "rate of change" at any point is 2x.

So when x=2 the slope is 2x = 4, as shown here:

Or when x=5 the slope is 2x = 10, and so on.

Note: f'(x) can also be used for "the derivative of":

$$f'(x) = 2x$$

"The derivative of f(x) equals 2x" or simply "f-dash of x equals 2x"

just
FYI,
no need
to
remember

First-order Derivative

Let's say we have $f(2e) = 2e^2$

And we want to know the GRADIENT at point

A:
$$(-2, 4)$$

$$f(-2) = (-2)^{2}$$

$$= 4$$

As
$$f'(u) = 2u$$
,
the slope at A is:
 $m = f'(-2)$
 $= 2(-2)$
 $m = -4$

With a slope & point, (m=-4) we can make a line. $y-y_1 = M(2e-2e_1)$ y-4=-4(2e-2) y-4=-4(2e+2)y=-4e-4

* this is the TANGENT LINE of f(re) at re = -2

- Let's say we want:
 - (i) instantaneous rate of change, and
 - (ii) tangent line eq.

u = 3, i.e point C.

(i) Instantaneous rate of change (or slope/gradient) requires first-order derivative.

At C, slope is:

$$m = f'(3) = 23$$

(ii) To make tangent line eq., we need a slope & a point.

$$* M_t = 6 \quad \left(from(i) \right)$$

* At
$$u = 3$$
, $y = f(3) = 3^2 = 9$. $C : (3,9)$

Notice that when we want to make a tangent line,

the SLOPE of f(w) at:

- * u < 0 must be negative
- * U=O must be O.
- * U 70 must be positive

This aligns with nature of f(re):

- * f(re) is decreasing at U<0
- * f(re) is stationary at re=0
- * f(re) is increasing at 1270

so that the connection between f'(u) and f(u) is

when	function is
f'(re) < 0	decreasing
f'(u) = 0	stationary (local min./max.)
f'(re) > 0	increasing

Practice FO Derivative

Find the (i) derivative, (ii) gradient, (iii) tangent eq. of the functions below at 2 = 2.

1
$$y = 3x^4$$
 2 $y = 5x^3$ **3** $y = 2x^2 + 3x - 5$
4 $y = x^3 + 2x + 1$ **5** $y = \frac{2}{x} + x, x \neq 0$ **6** $y = \frac{3}{x^2}, x \neq 0$

And state:

- (iv) the function is increasing/decreasing at u=2
- (v) the range of values when function is increasing & decreasing.

1. (i)
$$y = 3u^4$$
 $y' = 4.3u^3$
 $y' = 12u^3$

(ii) $m = f'(2)$
 $m = 96$
 $m = 96$

At $u = 2$, $y = f(2) = 32^4 = 48$
 $y = 48$
 y

(v) Visualising y'= 12 re3 with sign values:

: f is increasing at 1270, and decreasing at u < 0

3. (i)
$$y = 2u^{2} + 3u - 5$$
 (ii) $M = f'(2)$

$$= 4(2) + 3$$

$$y' = 2 \cdot 2u + 3$$

$$y' = 4u + 3$$
(iii) $* M_{*} = 11$

$$At u = 2, y = f(2) = 2 \cdot 2^{2} + 3 \cdot 2 - 5 = 9$$

$$P: (2, 9)$$

$$y - y_{P} = M_{*}(u - u_{P})$$

$$y' - 9 = 11(u - 2)$$
(iv) As $f'(2) = 11 \neq 0$, function is increasing at $u = 2$.

(v) Visualising y'= 42e+3 with sign values:

: f is increasing at
$$u > -\frac{3}{4}$$
, and decreasing at $u < -\frac{3}{4}$

5. (i)
$$y = 2u^{-1} + 2u$$
 (ii) $M = f'(2)$

$$y' = -1 \cdot 2u^{-2} + 1$$

$$y' = -\frac{2}{2u^{2}} + 1 \quad \left[u \neq 0 \right] \quad M = \frac{1}{2}$$
(iii) $M = \frac{1}{2}$

$$M = \frac{1}{2}$$

$$M = \frac{1}{2}$$

$$M = \frac{1}{2}$$

$$M = \frac{1}{2}$$
(iii) $M = f'(2)$

$$M = \frac{1}{2}$$
(iii) $M = f'(2)$

$$M = \frac{1}{2}$$
(iv) $M = \frac{1}{2}$

$$M = \frac{1}{2}$$

$$M = \frac{1}{2}$$

$$M = \frac{1}{2}$$
(iv) $M = f'(2)$

$$M = \frac{1}{2}$$

$$M = \frac{1}{2}$$
(iv) $M = f'(2)$

$$M = \frac{1}{2}$$
(iv) $M = \frac{1}{2}$
(i

(v) Visualising $y' = -\frac{2}{u^2} + 1$ With sign values:

sign values of
$$y'$$

-1.414 O 1.414 $y' = 0$

Lo asymptote

$$y' = 0$$

$$-\frac{2}{u^{2}} + 1 = 0$$

$$-\frac{2}{u^{2}} = -1$$

$$2 = u^{2}$$

: f is increasing at u < -1.414 and u > 1.414, decreasing at -1.414 < u < 1.414 with $u \neq 0$.