$$
\text { Calculus AI-SL Pt. } 1
$$

- Intro to derivatives
- First - order derivative
Mario Willyam

Intro to Derivatives

The key point of derivative is that we want to find a (tangent) gradient
from

$$
f(u)\rangle
$$

Let us Find a Derivative!

To find the derivative of a function $y=f(x)$ we use the slope formula:

$$
\text { Slope }=\frac{\text { Change in } Y}{\text { Change in } X}=\frac{\Delta y}{\Delta x}
$$

And (from the diagram) we see that:

$$
\begin{array}{cc}
x \text { changes from } & x \text { to } x+\Delta x \\
y \text { changes from } & f(x) \text { to } f(x+\Delta x)
\end{array}
$$

Now follow these steps:

- Fill in this slope formula: $\frac{\Delta y}{\Delta x}=\frac{f(x+\Delta x)-f(x)}{\Delta x}$
- Simplify it as best we can
- Then make $\boldsymbol{\Delta x}$ shrink towards zero.

Notation

"Shrink towards zero" is actually written as a limit like this:

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

"The derivative of \mathbf{f} equals
the limit as $\Delta \mathbf{x}$ goes to zero of $f(x+\Delta x)-f(x)$ over $\Delta x "$

Example: the function $f(x)=x^{2}$

We know $f(\mathbf{x})=\mathbf{x}^{\mathbf{2}}$, and we can calculate $\mathbf{f}(\mathbf{x}+\boldsymbol{\Delta x})$:

$$
\text { Start with: } f(x+\Delta x)=(x+\Delta x)^{2}
$$

Expand $(x+\Delta x)^{2}: f(x+\Delta x)=x^{2}+2 x \Delta x+(\Delta x)^{2}$

$$
\begin{aligned}
\text { The slope formula is: } & \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
\text { Put in } f(x+\Delta x) \text { and } f(x) & : \frac{x^{2}+2 x \Delta x+(\Delta x)^{2}-x^{2}}{\Delta x} \\
\text { Simplify }\left(x^{2} \text { and }-x^{2} \text { cancel) }:\right. & \frac{2 x \Delta x+(\Delta x)^{2}}{\Delta x} \\
\text { Simplify more (divide through by } \Delta x): & =2 x+\Delta x \\
\text { Then, as } \Delta x \text { heads towards } 0 \text { we get: } & =2 x
\end{aligned}
$$

Result: the derivative of $\mathbf{x}^{\mathbf{2}}$ is $\mathbf{2 x}$

In other words, the slope at x is $\mathbf{2 x}$

We write $\mathbf{d x}$ instead of " $\Delta \mathbf{x}$ heads towards $\mathbf{0}$ ".

And "the derivative of" is commonly written $\frac{d}{d x}$ like this:

$$
\frac{d}{d x} x^{2}=2 x
$$

"The derivative of $\boldsymbol{x}^{\mathbf{2}}$ equals $\mathbf{2 x}$ "
or simply " $d d x$ of $\boldsymbol{x}^{\mathbf{2}}$ equals $\mathbf{2 x}$ "

So what does $\frac{d}{d x} x^{2}=2 x$ mean?
It means that, for the function x^{2}, the slope or

instantaneous

is $\mathbf{2 x}$.

So when $\mathbf{x}=\mathbf{2}$ the slope is $\mathbf{2 x}=\mathbf{4}$, as shown here:
Or when $\mathbf{x}=\mathbf{5}$ the slope is $\mathbf{2 x}=\mathbf{1 0}$, and so on.

Note: $f^{\prime}(x)$ can also be used for "the derivative of":

$$
f^{\prime}(x)=2 x
$$

"The derivative of $f(x)$ equals $2 x$ "
or simply " f-dash of x equals $2 x$ "

First -order Derivative
Let's say we have $f(u)=u^{2}$

And we want to know the GRADIENT at point A: $(-2,4)$

As $f^{\prime}(u)=2 u$, the slope ot A is:

$$
\begin{aligned}
m & =f^{\prime}(-2) \\
& =2(-2) \\
m & =-4
\end{aligned}
$$

With a slope \& point, we can make a line.

$$
\begin{aligned}
& y-y_{1}=m_{2--2}\left(u-u_{1}\right) \\
& y-4=-4(u-(-2)) \\
& y-4=-4(u+2) \\
& \therefore y=-4 u-4
\end{aligned}
$$

* this is the TANGENT LINE of $f(x)$ at $u=-2$

Let's say we want:

(i) instantaneous rate of change, and
(ii) tangent line eq.
of $f(u)=u^{2} a t$

$$
u=3 \text {, i.e. point } C \text {. }
$$

(i) Instantaneous rate of change (or slope/ gradient) requires firit-order derivative.

$$
\begin{aligned}
& f(u)=u^{2} \\
& f^{\prime}(u)=2 u
\end{aligned}
$$

At C, slope is:

$$
\begin{gathered}
m=f^{\prime}(3)=2 \cdot 3 \\
\therefore m=6
\end{gathered}
$$

(ii) To make tangent line eq., we need a slope \& a point.

$$
\text { * } \begin{aligned}
m_{t} & =6 \quad \text { 〔 from }(i)\rceil \\
\text { At } u & =3, \quad y=f(3)=3^{2}=9 \quad \quad \text { C: }(3,9) \\
y-y_{1} & =m\left(u-u_{1}\right) \\
\therefore y-9 & =6(u-3) \quad \text { * you may stop here } \\
y-9 & =6 u-18 \\
\therefore y & =6 u-9 \quad \text { or here }
\end{aligned}
$$

Notice that when we want to make a tangent line,

the SLOPE of $f(u)$ at:

* $u<0$ must be negative
* $u=0$ must be 0 .
* $u>0$ must be positive

This aligns with nature of $f(u)$:

* $f(u)$ is decreasing at $u<0$
* $f(u)$ is stationary at $u=0$
* $f(u)$ is increasing at $u>0$

so that the connection between $f^{\prime}(u)$ and $f(u)$ is

when	function is
$f^{\prime}(u)<0$	decreasing
$f^{\prime}(u)=0$	stationary $($ local min max. $)$ increasing
$f^{\prime}(u)>0$	in cher

$$
f^{\prime}(x)=0 \quad f^{\prime}(x)=0
$$

Figure 10.2 Local extrema

Practice FO Derivative
Find the (i)derivative, (ii) gradient, (iii) tangent eq. of the functions below at $u=2$.
$1 y=3 x^{4}$
$2 y=5 x^{3}$
$3 y=2 x^{2}+3 x-5$
$4 y=x^{3}+2 x+1$
$5 y=\frac{2}{x}+x, x \neq 0$
$6 y=\frac{3}{x^{2}}, x \neq 0$
And state:
(iv) the function is increasing/ decreasing at $u=2$
(v) the range of values when function is increasing \& decreasing.

1. (i)

$$
\begin{aligned}
& y=3 u^{4} \\
& y^{\prime}=4 \cdot 3 u^{3} \\
& \therefore y^{\prime}=12 u^{3}
\end{aligned}
$$

(ii)

$$
\text { i) } \begin{aligned}
m & =f^{\prime}(2) \\
& =12 \cdot 2^{3} \\
\therefore m & =96
\end{aligned}
$$

(iii) $* m_{t}=96$

* At $x=2, y=f(2)=3 \cdot 2^{4}=48$

$$
\begin{aligned}
& p:(2,48) \\
& y-y_{p}=m_{t}\left(u-u_{p}\right) \\
& \therefore y-48=96(u-2)
\end{aligned}
$$

(iv) As $f^{\prime}(2)=96>0$, function is increasing at $u=2$.
(v) Visualising $y^{\prime}=12 x^{3}$ with sign values:

$\therefore f$ is increasing at $u>0$, and decreasing at $u<0$
$3 .(i)$

$$
\begin{aligned}
y & =2 u^{2}+3 u-5 & \text { (ii) } m & =f^{\prime}(2) \\
y^{\prime} & =2 \cdot 2 u+3 & & =4(2)+3 \\
& \therefore y^{\prime}=4 u+3 & \therefore m & =11
\end{aligned}
$$

(iii) $* m_{t}=11$

* At $u=2, y=f(2)=2 \cdot 2^{2}+3 \cdot 2-5=9$

$$
\begin{gathered}
p:(2,9) \\
y-y_{p}=m_{t}\left(u-u_{p}\right) \\
\therefore y-9=11(u-2)
\end{gathered}
$$

(iv) As $f^{\prime}(2)=11>0$, function is increasing at $u=2$.
(v) Visualising $y^{\prime}=4 u+3$ with sign values:

$\therefore f$ is increasing at $u>-\frac{3}{4}$, and decreasing at $u<-\frac{3}{4}$
$5 .(i)$

$$
\begin{array}{rlrl}
y & =2 u^{-1}+u \quad & \text { (ii) } m & =f^{\prime}(2) \\
& =-\frac{2}{2^{2}}+1 \\
y^{\prime} & =-1 \cdot 2 u^{-2}+1 & \\
\therefore y^{\prime}=-\frac{2}{u^{2}}+1[\underbrace{u \neq 0}_{\text {sump tote }}] \therefore m & =\frac{1}{2}
\end{array}
$$

(iii) * $m_{t}=\frac{1}{2}$

* At $x=2, y=f(2)=\frac{2}{2}+2=3$

$$
\begin{aligned}
P: & (2,3) \\
y-y_{p} & =m_{t}\left(u-u_{p}\right) \\
\therefore y-3 & =\frac{1}{2}(u-2)
\end{aligned}
$$

(iv) As $f^{\prime}(2)=\frac{1}{2}>0$, function is increasing at $u=2$.
(v) Visualising $y^{\prime}=-\frac{2}{u^{2}}+1$ with sign values:

$\therefore f$ is increasing at $u<-1.419$ and $u>1.419$, decreasing at $-1.414<u<1.414$ with $u \neq 0$.

